Why You Need to Buy a Cobra gt500 Shelby Mustang


The Cobra GT500 Shelby Mustang is one of the most powerful cars ever to hit the market. Since its arrival, this car has made stylish driving affordable and within reach of most car enthusiasts. When Ford Mustang was first released in 1964, a number of drivers were hesitant because it wasn’t exceptionally fast. It was this hesitation that inspired Ford to team up with Carroll Shelby, a racing legend, to produce a high performing version of the car. This version was renamed GT350 and it is the one that pioneered the arrival of Ford Shelby GT500.

The Ford Shelby GT500 is a powerful car that enjoys an upward of 700-hp and a supercharged V-8 engine capable to pump enough firepower to compete with the likes of Dodge Challenger Hellcat and Chevrolet Camaro ZL1. Whereas the Shelby GT350 was designed to achieve high racing speeds, the GT500 dominates the drag strip. Ford seems to have learned from its earlier mistakes when the GT500 first came into the market. The car had disappointing handling capabilities.

The Cobra GT500 Shelby Mustang is much more appealing and has much better comfort and performance. A revised suspension tuning and a more powerful engine are some of the key features that will make you want to buy this new car.

Why You Need to Buy a Cobra gt500 Shelby Mustang
The Cobra gt500 Shelby Mustang is the ultimate performance car that comes as either a coupe or a convertible. A number of significant upgrades have been made on this car to place it at the top of the pile. One such upgrade is the inclusion of an all-aluminum, 5.8-liter supercharged V8 motor. This motor is able to crank top speeds of 200 mph and 662 horsepower. The convertible version is limited to 155 mph which is still high enough for any driving enthusiast.

In terms of the gearbox, the car presents you a six-speed manual transmission system that combines with a solid limited-slip rear axle to spin the rear tires. You can also get a 10-speed automatic gear option to enhance your driving experience. An adjustable launch control and steering assist system have been included to enable the driver to select the preferred launching rpm. This car comes with a range of standard features such as the 19-inch alloy wheels, xenon headlights, Brembo brakes, leather sport bucket seats, CD player audio system & Synch multimedia voice-control system, satellite radio and auxiliary audio jacks.

You can choose options to have a glass roof couple, a navigation system that has dual-zone climate controls & HD radio, and an upgraded sound system. Other high-performance features like adjustable Bilstein dampers, larger Brembo brakes, separate engine oil, transmission cooling systems, and rear differential are also available for your choice.

The Cobra GT500 Shelby Mustang as a variant of the Ford Mustang has great features as well as incredible performance potential. It’s the most steroidal colt that Ford has ever presented on the market and has more power than its predecessors. Most of the buyers are impressed with its precise gearbox, agile handling, crisp steering response, solid cabin quality, and a fairly comfortable ride. Its thoughtful features and supportive seats should actually encourage you to buy the car.

Kincaid Performance Heat Exchangers, Intercoolers & SuperChargers for Toyota Tundra, Ford Lightning & Cobra, Dodge Challenger, Ford F150, Dodge Hellcat, Ford Mustang, Toyota Tacoma, Harley Davidson, Mercedes, Ford GT500, Chevy Camero, Audi, Cadillac, Chevy ZL1, Corvette

Kincaid Performance Inc.
201 Eubank Blvd NE, Ste C-1
Albuquerque, NM 87123

Source: http://kincaidperformanceauto.com/shelby-mustang-heat-exchangers/why-you-need-to-buy-a-cobra-gt500-shelby-mustang/


Toyota Tundra – Features You Didn’t Know About

If you’ve ever talked to a Toyota Tundra owner then you must have been impressed by the facts that they had so many good things to say about their truck. While you might have thought that this an isolated incident, it’s also quite difficult to find any Tundra owner who Hasn’t supercharged their truck with a custom Toyota Tundra Heat Exchanger If you are tired of your car and want something that you can be proud of then you should consider buying a Toyota Tundra. Here are some of the features you didn’t know about Toyota Tundra.

It offers diversity

As one of the best trucks in the market, the Toyota Tundra is offered in 50 different configurations. It comes in three cab styles namely the regular, extended and crew. It also has six different wheel designs which are available up to the trim level.

It was the first truck to feature a V8

While Toyota previously made a name with its smaller trucks, when the T100 was released it was criticized for being rather too small. Also many were unhappy that it came with a V6 engine. But when the V8 option came, it was officially absorbed in the full size pick up market. Apart from having four-wheel drive, it has a 6-speed automatic transmission that feeds power to its rear wheels.

It makes life easier

Apart from having lots of interior space, the Toyota Tundra also has 3 piece bumper design that makes repairs very easy. According to Toyota, most of its interior controls can be operated while putting on gloves. Some of its standard equipment includes heated side mirrors, a wiper de-icing, adjustable cargo, bed cleats, and mudguards. In addition, its locking tailgate features an easy lower lift design that you can remove if you want to.

It’s very much entertaining

With a 6.1-inch touchscreen display, voice recognition technology, a quick charge USB port and Bluetooth with music streaming and hands-free calling, it’s one of the best trucks when it comes to entertainment.

It’s not lacking in power

Although it’s a very efficient vehicle, this does not mean that it’s lacking in power. If you don’t need much power you can opt for a 270hp V6 but if you need power you can enjoy a 310hp V8. More so, most truck lovers admire the facts that it provides up to 10,000 pounds of towing.

An attractive exterior

Just like the interior, it also has a very attractive exterior. You can choose Spurce Mica or Magnetic metallic or just one of the other colors. However, many owners prefer to highlight their color by choosing chrome accents. With wheel size ranging from 17 to 22 inches, whichever size you choose, you can rest assured that they’ll look great.

If you are looking for the best pick up truck then Toyota Tundra is a truck that you can always rely on. By providing outstanding performance and amazing features, it’s easy to understand why it’s such a great truck to own. As matter of fact, most Tundra owners are passionate about their cars. By buying this car, you can rest assured that you’ll never be disappointed.

Kincaid Performance Heat Exchangers, Intercoolers & SuperChargers for Toyota Tundra, Ford Lightning & Cobra, Dodge Challenger, Ford F150, Dodge Hellcat, Ford Mustang, Toyota Tacoma, Harley Davidson, Mercedes, Ford GT500, Chevy Camero, Audi, Cadillac, Chevy ZL1, Corvette

Kincaid Performance Inc.
201 Eubank Blvd NE, Ste C-1
Albuquerque, NM 87123

Source: http://kincaidperformanceauto.com/toyota-tundra-heat-exchanger/toyota-tundra-features-you-didnt-know-about/

What Makes The Ford Mustang SVT Cobra Models So Popular

Mustang Cobras were first introduced by Ford in 1993, and its original name was “Ford Mustang SVT Cobra”. Since then, this amazing brand has produced lots of high-quality models that have satisfied numerous customers across the planet. Here we will talk about the 2004 model which has been a huge success in both looks as well as performance.

In fact, the power output of this vehicle is much superior to that its earlier versions. A number of innovative features including a robust DOHC V-8 engine, a powerful Roots-type supercharger along with a water-to-air intercooler are present in this particular version. Let us delve deeper into the fact why this vehicle is among the most preferred cars out there.

The amazing 2004 Ford Mustang SVT Cobra includes a robust 6-speed gearbox, which is actually a part of the standard equipment. The exterior of the vehicle has witnessed many improvements as well. Among them, mention may be made of the design of the hood, enhancements in both rear as well as front fascia, the rocker moldings and also the side scoops. Likewise, some significant enhancement has also been made to the car’s interior; 2004 Ford Mustang SVT now includes comfy front seats which are multi-adjustable along with Nudo leather which is used as seat coverings. Thus it can be rightly asserted that this version of the Mustang Cobras is a result of the advancements in the contemporary technology.

On top of this, it likewise includes a robust DOHC V-8, 4.6-liter engine which is provided with cylinder heads constructed from top quality aluminum alloys. These revolutionary cylinder heads are accountable for enhanced flow in the engine, thus generating tremendous overall power. As a matter of fact, the engine of the 2001 Mustang Cobra model used to generate a power of 320 HP at 6000 rpm; on the contrary, that of the 2004 Mustang Cobra produces an amazing 400 HP. Don’t forget these cars are easy to enhance with Ford heat exchanger kits to keep the engine cool & improve performance.


Given that the torque of the 2004 version is incredibly high at 4,760 rpm, the innovative engine is built entirely in a cast-iron block which helps to provide it with the required strength. The unit comprises of breathtaking carryover crankshaft made from forged-steel, resilient aluminum flywheel, as well as forged pistons.

The vehicle’s engine includes an amazing TTC T-56 6-speed manual transmission. Moreover, an aluminum driveshaft has been employed to get the job done smoothly and efficiently with fully refurbished universal joints which connect the drive to the rear axle. The company has likewise enhanced the suspension significantly. At present, it has been updated by the manufacturer with brand-new bushings plus remarkably efficient tubular cross-brace.

The 2004 model can likewise boast of innovative Bilstein monotube dampers on every corner of the automobile intended for providing additional durability as well as improved brake performance. The car’s hood has also been completely redesigned. Now the front fascia is more aggressive in appearance which is ideal for providing adequate air circulation to the engine.

Thus, after going through these above-mentioned facts, it should be now apparent to us why Ford Mustang SVT Cobra models are amongst the most in-demand automobiles on the market.

Kincaid Performance Heat Exchangers, Intercoolers & SuperChargers for Toyota Tundra, Ford Lightning & Cobra, Dodge Challenger, Ford F150, Dodge Hellcat, Ford Mustang, Toyota Tacoma, Harley Davidson, Mercedes, Ford GT500, Chevy Camero, Audi, Cadillac, Chevy ZL1, Corvette

Kincaid Performance Inc.
201 Eubank Blvd NE, Ste C-1
Albuquerque, NM 87123

Source: http://kincaidperformanceauto.com/ford-mustang-svt-cobra-heat-exchangers/what-makes-the-ford-mustang-svt-cobra-models-so-popular/

6 Ways to Enhance Your Toyota Tacoma

The Toyota Tacoma has gained a lot of fans ever since Toyota released their first Tacoma model back in 1995. The Toyota Tacoma is a favorite particularly among people who love powerful, durable trucks that can handle any terrain you throw at them. Three generations of the Tacoma have been produced over the years with each newer generation having a lot of performance and design upgrades. Since it is impossible to buy the latest model every time Toyota unveil a new Tacoma, many people end up keeping their older models as opposed to buying the latest models. A contributing factor to this is the availability of many power and performance upgrade options, some of which are as follows:

1. Superchargers
A supercharger is used to pressurize air intake to over the atmospheric level so that the engine can suck in more air, which combines with more fuel to generate more power. A new Toyota Tacoma supercharger is available for all Toyota Tacoma models manufactured after 2005. The supercharger boosts your Tacoma’s power to 304 hp if your vehicle initially had 236 hp. The all-new supercharger system features rotating components in a single integral manifold with spark plugs and a serpentine drive belt system. This upgrade will make your vehicle a lot more powerful.

2. Air Filtration
It is critical to ensure your engine is free from contaminants of any kind. Air filters play a key role in maintaining the integrity of your engine. Every Tacoma is fitted with a standard, paper-based air filter when they are coming out of the factory. To make it better, you can fit the Tacoma with a secondary air filter which drops easily into the engine’s airbox. Since aftermarket air filters leave the air cleaner than the stock air filters, your truck will perform better. Furthermore, since they are made of fabric, secondary air filters can be washed and reused.

3. Manage the Heat
Like other heavy engines, the Toyota Tacoma engine produces a lot of heat as you drive. If your engine’s cooling system is damaged, your vehicle is bound to run into performance issues. You can install a brand new Toyota Tacoma heat exchanger to ensure your engine does not overheat even on those long drives. You can add a cold air intake kit to help bring in more cool air to the internal combustion engine to boost engine efficiency and performance.

4. Install Performance Chips
This is mostly for the new generation Toyota Tacoma trucks that have computers controlling everything. Performance chips allow you to ‘hack’ your vehicle so that you can be able to control functions that have an effect on your vehicle’s performance like fuel to air ratio. Using performance chips, you can set new parameters for any functions you choose, such as changing how your Toyota Tacoma uses gas or the amount of air being sucked in.

5. Lose the Weight
The lighter your vehicle is, the faster it will move. You need to evaluate your Tacoma and remove the things you don’t need such as extra seats. You can also replace heavy materials with lighter alternatives like plastic windows in place of glass windows, disc brakes, among others.

6. Go All In
Performance is always determined by the health of the engine. Sometimes the solution to performance issues means having to replace the whole engine especially if your vehicle is old or it has been involved in an accident.

Kincaid Performance Heat Exchangers, Intercoolers & SuperChargers for Toyota Tundra, Ford Lightning & Cobra, Dodge Challenger, Ford F150, Dodge Hellcat, Ford Mustang, Toyota Tacoma, Harley Davidson, Mercedes, Ford GT500, Chevy Camero, Audi, Cadillac, Chevy ZL1, Corvette

Kincaid Performance Inc.
201 Eubank Blvd NE, Ste C-1
Albuquerque, NM 87123

Source: http://kincaidperformanceauto.com/toyota-tacoma-heat-exchangers/6-ways-to-enhance-your-toyota-tacoma/

Toyota Tacoma Supercharger – How to Enhance Your Vehicle

Toyota Tacoma is a pickup truck that is manufactured in the United States by Toyota a Japanese automobile company. Adding a little power to your Toyota Tacoma will increase its performance. You can do simple or major upgrades to your truck.

1. Install a cold-air intake
There is always a debate whether installing cold air intake is worth it or not. Well, installing cold air intake is worth it because:
> Cold air intake will remove the sound that is baffling during the stock intake.
> It will help bring in cooler air from the engine compartments. Since the cooler air is a little dense with more oxygen, this will allow you burn more fuel.

Installing a cold air intake will add an average of 6 to 11 horsepower and a little torque. once you install a cold air intake you will notice there is improved fuel economy since the cold air intake improves the throttle responsiveness.

2. Buy an advanced engine tuner
Most of the engine tuners are very small and are installed through the diagnostic port. The engine tuners are pre-programmed with user-friendly multiple tunes. An engine tuner will maximize your engine performance.

The engine tuner that comes with most of the trucks is normally not the best to generate maximum horsepower. Once you reprogram your Toyota Tacoma with an aggressive tuner your horsepower will definitely increase. An engine tuner can increase your Toyota Tacoma horsepower from 10hp up to 50hp. The horsepower increase depends if your truck uses gas or diesel and on its engine size, V6 or a massive diesel.

3.Install a turbo kit
Turbocharge are common on the big trucks. Installing a turbo charge you will notice fuel efficiency since they utilize the unwanted heat from the exhaust and they use it to boost the pressure of air intake. Turbos are affordable, durable and they do not affect the engine’s reliability. Most of the turbo kits in the market can increase your truck’s horsepower from 50 up to 200 hp.

4. Install a Toyota Tacoma supercharger
Installing a supercharger will boost your Toyota Tacoma horsepower. Installing a supercharger on a Toyota Tacoma you will notice that there is no delay between the boosted intake pressure and the throttle application. Toyota offers designed supercharges through its TRD performance division, the Toyota Tacoma supercharger can add over 100hp and 50ft-lbs.

5. Install aftermarket exhaust system
An aftermarket is an easy and quick way to increase your Toyota Tacoma performance plus you will enjoy the hearty exhaust note. Once you replace your factory exhaust with the aftermarket exhaust you will notice that your truck will gain from 5hp to 20hp depending on the trucks engine size.

6. Do regular maintenance on your truck
Truck maintenance will not increase your horsepower but it will return your horsepower. Your Toyota Tacoma performance can be increased by removing the dirt that has clogged on the fuel and air filters. You can replace the filters and they are also easy and cheap to change.

You also need to change your old oil and replace it with quality synthetic oil and you will notice an increase in responsiveness since the engine runs better on clean and quality oil.

Kincaid Performance Heat Exchangers, Intercoolers & SuperChargers for Toyota Tundra, Ford Lightning & Cobra, Dodge Challenger, Ford F150, Dodge Hellcat, Ford Mustang, Toyota Tacoma, Harley Davidson, Mercedes, Ford GT500, Chevy Camero, Audi, Cadillac, Chevy ZL1, Corvette

Kincaid Performance Inc.
201 Eubank Blvd NE, Ste C-1
Albuquerque, NM 87123

Source: http://kincaidperformanceauto.com/toyota-tacoma-supercharger-intercooler/toyota-tacoma-supercharger-how-to-enhance-your-vehicle/

Ways to Increase Performance of Your Ford Lightning

Was reading an old blog post over at Lightning Force & saw some great tips for boosting performance of your ford lightning. Here are the top 7 from the list. By the way most of these parts can be found at Lightning Force, except for the Intercooler/Heat Exchanger which is from Kincaid Performance. The links are in the articles for those looking to start boosting up their vehicle asap.

ICE YOUR INTAKE or Get a Intercooler?

There are many basic tricks to unlocking horsepower from your Lightning. One of them is run with the engine coolant as cold. Ice cooling the stock manifold or the aftermarket Lightning Power Plenum makes the air entering the engine denser & helps to increase power. But doing it this way you have to remember to remove the ice before racing and to soak up any water so it doesn’t make a mess on the track or get under your tires. Many people opt to just get a Ford Lightning Intercooler (heat exchanger) so you don’t have to constantly ice in between races. One that works well & comes with the drag option is called a Killer Chiller at https://killerchiller.com. They specialize in heat exchangers for different makes & models of cars/trucks.

(Use my coupon code for an extra $100 off your order. Use “uk3” without the quotes at checkout to save.


In addition to gaining an awesome exhaust note, aftermarket exhaust systems are a quick and easy path to additional horsepower. Much like the factory air intake, the factory mufflers are designed to be quiet first and efficient second. If you replace the quiet factory muffler with a quality after-market unit, you’ll see a slight increase in horsepower and enjoy a hearty exhaust note.

If you replace the factory exhaust system with an after-market tuned cat-back exhaust, you may see gains from 5 horsepower to as much as 20 horsepower (depending on the size of your truck’s engine). Finally, if you replace the factory exhaust manifold with a set of after-market headers, you can pick up a few more horsepower…just make sure you understand that changing your factory exhaust manifold can change your truck’s torque curve. Long-tube headers, for example, often increase horsepower at the expense of some low-end grunt.


The factory engine tune on most trucks isn’t necessarily the best for generating maximum horsepower. Your truck heads to the dealership with a tune meant to make it shift smoothly, offer a good combination of fuel efficiency and power, and to operate as quietly as possible. If you re-program your truck with a more aggressive tune, you can often pick up considerable horsepower. Depending on the type of truck you have (gas or diesel) and engine size (small V6 or massive diesel), engine tuners can increase power from 10hp all the way up to 50hp.

Most engine tuners are handheld units that plug into your trucks’ diagnostic port. They are pre-programmed with a variety of tunes, and they’re generally very user friendly. If there’s a downside to using an engine tuner, it’s that they cost a fair amount of money (some cost more than $400) and they often require you to buy premium gas. However, if you’re willing to invest, an engine tuner can really maximize performance…especially on trucks that already have other performance add-ons (like intake, exhaust, etc.).






Kincaid Performance Heat Exchangers, Intercoolers & SuperChargers for Toyota Tundra, Ford Lightning & Cobra, Dodge Challenger, Ford F150, Dodge Hellcat, Ford Mustang, Toyota Tacoma, Harley Davidson, Mercedes, Ford GT500, Chevy Camero, Audi, Cadillac, Chevy ZL1, Corvette

Kincaid Performance Inc.
201 Eubank Blvd NE, Ste C-1
Albuquerque, NM 87123

Source: http://kincaidperformanceauto.com/ford-lightning-intercoolers-heat-exchangers/ways-to-increase-speed-of-your-vehicel/

How To Performance Tune Your SuperCharged & TurboCharged Vehicle

When looking for ways to improve the performance your getting out of your car at the track during drag racing or trying to keep your vehicle cool in very hot environments there are few places or people who can just give it to you straight based on years of experience. Recently when looking through a few articles online from a few blogs I’ve followed, I’d discovered some great info from a vet. So I’ve decided to share my inputs as well as ones from the post here for you to consider when looking to enhance your vehicle.

First things first anybody doing drag racing or street racing that is icing in between runs needs to get a heat exchanger asap. Not only does it keep you from having to constantly use massive bags of ice, but it can help extend the life of your vehicle especially if you live somewhere that is very hot. I’ve come accustomed to using the Killer Chiller Refrigerated Heat Exchanger Kits (available here) with supercharger or turbocharger using an air to water intercooler system. Main reason I’ve used these on my cars is because the kit is fully plug and play & takes about 3-4 hours to install using normal hand tools. For those who are doing drag or street racing, you can easily add on the drag option or just buy the version of the kit that comes with it. Get $100 off using my dealer code”uk3″ at checkout. Put that in without the quotes when checking out to save some cash, as everyone knows every bit of savings helps.

Ok, now that you’ve got your car staying cool & have put down the bags of ice, lets move to some other things to consider.

The more consistent your car is, the more races you can win. A consistent car also allows for more accurate data when testing new combinations and therefore a faster car. You may already have many of them on your car and you may have heard of others but have not given them much thought.

In comparing 26-inch tall tires with 28-inch tall tires, the difference in rollout distance can be seen. You can use this difference to your advantage if you take it into account when staging the car.

One of the advantages of running one car for more than 40 years (even though I have had many others) is that I have tried almost every product on the market and know what works and what doesn’t. I have tried many things that I quickly got rid of because they just didn’t work as advertised. Other times there was something else out there claiming to be better, and I wanted to try it instead. As a result of all this experimenting, I have found eight things (in no particular order) that I feel every bracket racer should have. If you look at the racers who win, they are already incorporating these exact ideas, or something similar. Gone are the days of a good driver winning on his skills alone.

Don’t misunderstand me. Experience helps make the right decisions but knowledge and information help take the guesswork out of those decisions.


Tall Tires

The correct-diameter front tires for the best 60-foot times and best reaction-time combinations are different for every driver and car combination. The same things hold true for either foot-brake cars or transbrakeequipped cars. Tire diameter can adjust your 60-foot times, but also affects your reaction times, so you need to compromise to achieve the best-possible front tire for you and your car. Since it is hard to adjust the driver sometimes, a differentdiameter front tire is the best way. The taller tire has more of a rollout (larger circumference) and therefore the better your 60-foot clockings are.

Mickey Thompson front tires with a 26-inch diameter have a rollout of 78 inches. The same tire in a 28-inch diameter has a rollout of 86 inches. Unless you are deep staged (staging enough forward that the pre-stage light goes out), normally your front tires have the leading edge of the tire breaking the staged beam (photocell) while the trailing edge is still breaking the pre-staged beam.

With 7 inches between the stage beam and the pre-staged beam, the tire is able to roll at least 7 inches more before leaving the stage beam and activating the red light. If your front tire has a circumference of 86 inches, it is able to roll farther than a tire with a 78-inch circumference. Not only is your car able to move the 7 inches, but it also gains the distance provided by any amount of tire diameter still left in the pre-stage beam as you are breaking the stage beam.

This is like a rolling start! With the larger-diameter tire having more distance before exiting the pre-stage beam, the 60-foot time is quicker than for the same car with smallerdiameter tires. The same holds true for the rest of the times recorded farther down the track.

Reaction time is based on the actual time from when you exit the staged beam and the light turns red or green. Therefore, if you have a taller tire the 60-foot times (rolling start) are quicker, but your reaction time is slower due to the longer rollout required before the tire exits the staged beam.

Normally, for winning races, I say go for the best-possible reaction time. In bracket racing, it’s not how fast you get there but how consistently you get there coupled with a great reaction time.

The whole picture can become very complicated. Let’s say you have the right tire (usually the tallest tire) for your best 60-foot times ever, but your reaction time needs to improve. One quick thing to look at is front-tire air pressure. Lower front-tire air pressure creates a longer rollout, and higher front tire pressure creates a shorter rollout.

Likewise, less front-tire air pressure creates a larger footprint, meaning there is more tire left in the pre-stage beam for a quicker 60-foot time and a slower reaction time. Higher front tire air pressure creates a smaller footprint, meaning there is less tire left in the pre-stage beam for a slower 60-foot time and a quicker reaction time. I have even seen cars with one side tire-and-suspension assembly removed and reattached farther rearward to create a much longer rollout.

Accelerator linkage can be adjusted as well; not only at the pedal but also at the carburetor. Be sure the engine responds as quickly as possible when you press down on the gas pedal.

The race cars of today have more and more electronics than cars of the past, including the possibility of electronically controlled shifters, transmission brakes, shock adjusters, programmable ignitions, data recorders, and more. I refer to them that way (cars of the past) because most drag race cars of today are cars of the past no matter how modified they may be. While it is not unusual to see a car run 9.50-second ETs, that was what a Pro/Stock car ran 40 years ago. There are many reasons for these advancements, but almost all of them besides tires (see Chapter 9) need more and better electronics to utilize these new improvements.

Remember, no one single combination fits all. It is up to you to see what would make you and your car the best winning combination possible by working on your reaction time and 60-foot time.


Power Saving

Most race cars today run an alternator to be sure the battery is in the best condition possible for each run, all the way through the run. Unless you enjoy charging your car’s battery between runs, at the very minimum you should go to a 12-volt alternator such the one-wire units available from Powermaster that generate 70 amps at idle. That means not only is the alternator charging the battery going down track, but also while on the return road and while idling in the pits or staging lanes, or any time the engine is running.

Being from the old school, old habits die hard. After changing to a one-wire Powermaster alternator, I still charged my battery between rounds. I like to double-enter some races, which means there is even less time between rounds. So I bought a voltmeter, and by monitoring it between rounds I found it wasn’t necessary to charge my car’s battery between rounds, or even at all. I use a 12-volt battery tender between events to be sure the battery is at full charge before the next race.

For experimental purposes, I recently installed an XS Power 16-volt absorbed glass mat (AGM) maintenance-free battery and corresponding Powermaster 16-volt alternator. I expected to see a safety margin in reserve voltage available at the track between rounds. What I also got (and didn’t expect) was all my electrically-powered accessories (including the cooling fans, water pump, and fuel pump) ran at a higher RPM. They were all noticeably faster and I could hear the difference. My engine (with 509 ci and 12.5:1 compression) starts quite hard on occasion; especially after it has some heat in it, and sometimes it kicks back against the starter.

With this setup, it sounds like a completely different engine when turning over. The starter spins it over so effortlessly it sounds like the car has no spark plugs. Since I still carry my battery in the stock location, I bought a new battery tray and holddown fabricated that bolts right into the factory spot. Of course, a 16-volt battery charger is needed to keep 16-plus volts in the battery. When fully charged, the battery should hold 19.2 volts.

AGM batteries have high coldcranking amperages and hold a charge for a much longer time. There is no liquid acid in an AGM battery. They never need liquid added, are maintenance-free, are non-spillable, and they can be mounted in any angle except completely upside-down.

They do contain vents which are normally closed, but should the battery be overcharged and internal pressure build up, the vents open to release it. This is a very rare occurrence;  however, and today’s maintenancefree AGM batteries are highly recommended, as they are better in every way than the traditional flooded lead-acid batteries they replace.

Another area of importance for saving power is the starter. I run a Powermaster XS Torque Starter. Not only does it take up less space (giving me more header clearance) but with its aluminum case, it weighs only 8 pounds—about half the weight of a normal heavy-duty starter.

A 16-volt battery charger is a must for a 16- volt battery system. A 12-volt charger cannot keep the 16-volt batter at full charge. It can also be used as a battery maintainer between races, lengthening the life of the battery.

High-torque starters like this one from Powermaster are capable of starting engines with 19:1 compression and are reliable start after start. They also run cooler due to more header clearance.

Remember, less weight means quicker ETs. Research has shown that 100 pounds equals approximately .10 second in ET. By being smaller in size and farther away from the engine block and exhaust headers, the starter doesn’t soak up as much heat. Therefore, its tolerances are maintained much better and it starts the engine more easily when the engine temperature is higher, raising compression. It has 200 ft-lbs of cranking power and uses a 4.4:1 gear reduction design to be able to get the job done, even with engines pushing up to 18:1 compression ratio.


Shifter Style

One of the things that helps my car run so consistently is the shifter. The last time I raced, it ran 7.04, 7.04, 7.03, and 7.03 in the late afternoon and early evening. Over the years, I have used many shifters ranging from the factory style to the aftermarket ratchet style to electrically-activated units and air-shifted units. The Precision Performance Products shifter provides solid movement of the shifter at exactly the same RPM for both shifts, time after time. And it looks good.

The model I am using is a reverse pattern. It is triggered by an MSD RPM switch and is operated by a carbon dioxide bottle. Like everything else, I felt I needed a backup carbon dioxide bottle, which is a good idea, but I have been using this shifter for well over a year now on the same bottle. It can be used for standard- or manual-valve bodies, with forward or reverse patterns, and is complete with a neutral safety starting switch, a reverse lockout switch, and a transmission brake switch.


Transmission Brake

Even though I run in the the foot-brake class, I like having a transmission brake. The good thing about a transmission brake switch is that if you roll into the staged beam too far and wish to back up (which is typically not allowed) and your competitor is already pre-staged, you can simply put the shifter into neutral, hit the transmission brake button, and the car is in reverse. You can back up and quickly shift back into first gear, usually before anyone even knows what happened. It’s much quicker and easier than shifting into neutral, pressing the reverse lockout button, shifting into reverse, backing up, shifting into neutral, and then shifting back into first.


Weather Stations

Weather stations have gotten more affordable over the years. When I first started racing, all that was available were temperature, humidity, and barometer gauge sets. By recording old runs and the gauge settings you could fairly predict your next run’s ET or dial-in. The old seat of the pants or just experience worked great also if there were no changes in the weather but should a weather front come through, without consulting any gauges, your ET would probably change and you could be on the trailer wondering why.

Back then local track bracket points chases were pretty well a weekly affair. Such experience pretty wellseparated the every week racers from the under experienced once in a while racers. Changes in the quality of air (density) not only could slow down or possibly speed up a car but also might require a change in fuel mixture.

Air density gauges came later in the 1980s. Air density decreases with increasing altitude as does barometric air pressure. It can also change with changes in temperature and/or humidity. The less dense the air, the less power your engine makes and the slower the ET. Also, less oxygen is present in less dense air so you will need to adjust your fuel mixture to a leaner condition. Air density depends on temperature, barometric pressure, and how much humidity is in the air. If an engine was at optimum air/fuel mixture while in denser air and less dense air moved in, the engine could be in an over-rich condition. This could create a condition anywhere from not noticeable to seeing black smoke coming out of the exhaust upon acceleration.


. Be sure you mount the carbon dioxide bottle in a secure and upright position and somewhere you can reach it without too much trouble for that time when you just remembered you forgot to turn it on for the day’s activities.

An air density gauge can help you when recording runs in your log book.

While this is not necessarily harmful to your engine for a short time, if severe enough, this may fowl out the spark plugs which will add to the power loss. Changing the fuel back to its optimum mixture you gain back some of the power lost. You can’t do anything in a naturally aspirated engine (no power adder) to ever get back all 100 percent of the power lost in less dense air. If the air becomes more dense then the car can make more power. Due to the denser air you must richen your car’s fuel mixture back to optimum air/fuel mixture, which will make even more power.

However, not richening back to optimum air/fuel mixture causes a lean condition. Depending upon how drastic the air density has changed, this could show as a pulsating miss at the top end of the track or a bog off the starting line. Over lean conditions can over a period of time burn pistons, rings, and/or valves thus making for a very expensive repair.

A race car’s engine is an air pump and a naturally aspirated (no power adders) engine can only pump a certain volume of air. The density of that air can dictate how much power that engine can make.

Barometric Pressure and Air Density

Increasing barometric pressure increases the density. Using an air storage tank as an example, if it contains 20 pounds of air pressure and you add more air to the same tank the pressure will increase corresponding to the amount of air you add yet it is still in the same size container. Since a race car’s engine is an air pump, denser air being pumped into the cylinders needs a richer mixture, therefore making more power.

Lower barometric air pressure creating less dense air needs a leaner mixture, therefore making less power. Altitude and barometric pressure can both change the air density. As you go higher in altitude, such as in the mountains in Denver, the air density decreases just as going to sea level or lower will cause an increase in air density. Weather changes can change the barometric pressure either higher or lower and will also affect the air’s density, but not nearly as much as altitude.

Barometric pressure is higher on a nice cool sunny day, meaning denser air. If an afternoon storm comes in the barometric pressure will lower as will the air density. The barometric pressure again increases raising the air density as the storm passes. Therefore, air density is at its lowest at a high elevation on a hot day when the barometric pressure is low. The air’s density is highest at low elevations when the barometric pressure is high and the temperature is low.


Higher air barometric readings mean denser air and more power, indicating a possible leaner engine condition. The same in reverse if the barometric reading gets lower.

Lower air temperature means denser air and more power, indicating a leaner engine condition. The same in reverse if the air gets warmer.

Lower humidity readings indicate denser air and more power, indicating a leaner engine condition. The same in reverse if the humidity gets higher.


Temperature and Air Density

Temperature has the opposite effect on air density as does barometric pressure. Using a balloon as an example, heating the air captured in a balloon expands the balloon just as cooling it causes it to shrink. How-ever, the same hot air not in a balloon (surrounded by nothing but air) pushes the surrounding air aside.

As a result, the amount of air in a particular area decreases when the air is heated if the air is not captured as in a balloon. In normal atmosphere the air’s density decreases as the air is heated. This makes less power and requires a leaner fuel mixture change due to the less oxygen available with the less dense air. Likewise the air’s density increases as the air is cooled. This makes more power and requires a richer fuel mixture change due to the more oxygen available with the more dense air.

Humidity and Air Density

Even though I explain how humidity effects air density I am not sure it has the power-robbing effect on performance you might expect as with barometric pressure and temperature. Humidity (vaporized water) when mixed with an exploding charge of a fuel and air mixture will explode itself, and create steam which being in a confined space will also help to develop horsepower.

Humid air is less dense than dry air. Scientists explain that a fixed volume of gas, let’s say 1 cubic foot, at the same temperature and pressure, always has the same number of molecules no matter what gas is in the container. Imagine a cubic foot of perfectly dry air. It contains about 78 percent nitrogen molecules, with each molecule having a molecular weight of 28. Another 21 percent of the air is oxygen, with each molecule having a molecular weight of 32. Molecules are free to move in and out of that 1 cubic foot of air.

What scientist lead us to conclude is that if we added water vapor molecules to that 1 cubic foot of air, some of the nitrogen and oxygen molecules would leave (remember the total number of molecules in one cubic foot of air stays the same at the same temperature and pressure). The water molecules, which replace nitrogen or oxygen, have a molecular weight of 18. This is lighter than both nitrogen and oxygen. In other words, replacing nitrogen and oxygen with water vapor decreases the weight of the air in the cubic foot and density decreases. Compared to the differences made by temperature and air pressure, humidity has a small effect on the air’s density. But, humid air is lighter than dry air at the same temperature and pressure.

Isn’t water heavier than air? If you pour water in a bucket doesn’t it go to the bottom with the air on top? This is true in a liquid form. But, the water that makes the air humid isn’t liquid. It’s water vapor, which is a gas that is lighter than nitrogen or oxygen. When humidity reaches 100 percent it is then a liquid falling from the sky to the bottom of the bucket. Humidity is measured as a percent-age of the ratio of the current absolute humidity to the highest absolute humidity possible. This is water vapor that a given amount of air can contain with 100 percent being the maximum amount before it returns to a liquid state and falls out of the sky as rain. Humidity doesn’t have to be at 100 percent at ground level before rain can occur but it must be 100 percent somewhere in the clouds above the earth.

A reading of 100 percent relative humidity means that the air is totally saturated with water vapor and cannot hold any more, creating the possibility of rain. The amount of water vapors the atmosphere can hold before reaching 100 percent depends upon on the current air temperature.

Warmer air can evaporate more water vapors than cooler air. Thus, on any given day if the temperature rises the humidity level will decrease. As the cool night air comes in the same amount of water vapors in the air will give a higher humidity reading. Therefore, with the cooler night air and the same amount of water in the air the humidity will read higher yet more power is available because the cooler denser air now has more molecules. Since the water molecules are the same number there will be more oxygen and nitrogen molecules even with a higher humidity reading.

While we are talking about air density also consider that denser air will slow down objects moving through it more than less dense air because the object has to shove aside heavier molecules. Such air resistance is called “drag,” which increases with air density. Cool, dense air creating more drag will slow a muscle car’s acceleration rate; however, the additional horsepower created with this denser air will compensate for the drag and accelerate the car faster. Turbochargers or superchargers are ways of increasing the density of the air going into an engine.

Years ago, I developed my own computer program that recorded run information and the air density for each run. Then, given the new air density, I could look up all runs with the same air density.

Predicting Dial-ins

Weather stations kept evolving into more sophisticated instruments. Not too many years ago at a very big NHRA race in Memphis, I made it to the final round. There was a storm coming in and it got cloudy and cooled off several degrees. My opponent did not have a weather station/ET predictor. He dialed his car quicker as I would have also done based upon the cooler air. I consulted my local weather station and it indicated that with the coming storm and lower barometric pressure the air had gotten worse. I dialed my car slower. I took home the Wally.

I use the Computech’s RaceAir Pro Competition Weather Analyzer and computer. Notice the and computer, as they now predict dial-ins, calculate jetting changes needed, throttle stop timer settings, many mathematical calculations, are used as a calculator, and run completion calculations based on partial runs.

When turned on, the Computech analyzer shows from memory the weather station readings from the last time it was on. Press the sample button and the analyzer turns on the fan which draws fresh air through the unit to get the current readings. This takes a few minutes before it will read “Sampled Weather” indicating it has fresh information. I have noticed if you move it around while it is sampling the air it takes longer to perform the sampling. Do not set it in the sun when sampling or near any other sources of heat such as your exhaust or even your own body heat.


Computech’s Race Air Pro Weather Station complete with carrying case keeps you current as to weather changes, and expected ET based on those changes.


Once the air has been sampled, it displays current temperature, humidity, barometer readings, correction factor, and air density, among many others. I record all of the settings after each run on the ET slip and in my log book for reference material. For predicting dial-ins the only numbers you need is the correction factor.

The higher the number the worse the air and the lower the correction number the better the air. Let’s say at 13:36 you ran your last time trial flat out with no lifting, and ran a 6.8747. When you returned to the trailer the analyzer correction factor was 1.0331 (70.7 degrees – 30 percent – 29.49). Due to some track problems your first round of eliminations wasn’t until 16:24 (2.48 hours later). Running a fresh sample before you head to the staging lanes the correction factor now reads 1.0368 (72.8 degrees – 30 percent – 29.47). Press the dial-in key and the analyzer asks for the old correction factor. You enter the 1.0331. Now the analyzer needs the old ET, so enter 6.8747. The analyzer now asks if you want to use the current correction factor of 1.0368.

If you don’t, enter the desired correction factor. If you do, just press enter and the analyzer indicates based on your last run compared to the present air conditions that your run should be 6.883. This run would be more in the middle of the day when the temperature is normally higher, causing the car to slow down.


2-Speed vs. 3-Speed

There are exceptions to every rule, but drag race cars weighing less than 3,000 pounds and running an automatic transmission are better off with a 2-speed Powerglide transmission for consistency. This is because the Powerglide has a higher (lower numerically) first gear and the fact that only one shift is required instead of two. However, for cars weighing more than 3,000 pounds, the lower first-gear ratio of a Turbo-Hydramatic transmission is needed to get the extra weight to move from a standing start. Also, because of the lower first-gear ratio, the middle (second) gear is required to bridge the gap between the low first gear and third gear.

That seems pretty simple, and if that were all there was to it, it would be. Both transmissions have a final gear ratio of 1:1, so once in the final (top) gear, they both perform the same. The big difference is the first-gear ratio.

From the factory, a Powerglide transmission has either a 1.76:1 or 1.82:1 first gear. Different-ratio first-gear sets are now available (through TCI Automotive, JW Performance Transmissions, and others) for the Powerglide transmission. The Turbo 400 transmission has a first gear of 2.48:1 and second gear of 1.48:1. What becomes the issue here is how you can overpower the rear tires with too much starting-line ratio.


For dedicated drag racing cars, the modern versions of the old GM Powerglide 2-speed transmissions (like this one from TCI) may be ideal. They are certainly strong—capable of handling more than 1,000 hp with ease. Their gear ratios can be tailored to best suit your vehicle’s requirements. They are best used in lighter-weight vehicles, including dragsters.

This GM TH-400 transmission is from TCI, and is suitable for heavier cars. It can handle big power reliably, and various first-gear ratios are offered. This particular TH-400 has the desirable 2.10:1 first gear.

The key to making an automatic transmission live in a heavy car with a lot of power lies in fortifying it with beefy internal components (such as these TCI goodies, including a six-pinion planetary set and additional clutches) and keeping the transmission fluid cool.

Based upon the stroke of your engine, which predetermines the torque it is capable of, there is a given number that you don’t want to exceed for the weight of the car. For example:

My car (with me in it) weighs about 3,800 pounds. My engine has a 4.5-inch stroke. According to the chart on page 111, a 3,800-pound car with a 4.5-inch-stroke engine should have a starting-line ratio of 8.90:1 (between 8.75 and 9.00:1).

However, when we take my first-gear ratio of 2.48:1 and multiply it by the rear-end ratio of 4.10, we get 10.17:1 for a starting-line ratio. To correct the situation, I can change the rear-end gear ratio to something around 3.59:1 since 8.9 ÷ 2.48 = 3.59. However, that also changes second and third gears, and affects acceleration throughout the whole run.

The other option is to change the first-gear ratio in the transmission. Manufacturers such as TCI Automotive offer complete gear sets (or complete transmissions) with a first-gear ratio of 2.10:1. Now my starting-line ratio is 2.10 x 4.10, or 8.61:1, and I have corrected it without changing acceleration the rest of the way down the track.

Data Records

If you are a one-person crew, a data recorder is necessary. There are different types with many channels to record different events, but one that records both engine RPM and driveshaft RPM is adequate.

When looking around for a new one, I kept hearing the same thing from other racers: The Sportsman Data Recorder from Racepak was a great unit. I now have one, and (if you’re willing to invest the time) it can provide a lot of valuable information. Weighing less than 1 pound, measuring about 6×4.5×1 inches, and mounted under the passenger seat, you’ll never know it’s there until you’re ready to download some data to analyze.

It comes with software to install on your laptop. You can either connect it to your laptop (with a provided cable into a serial port) or it has provisions for an SD memory card that can be plugged into the laptop directly. Mine records engine RPM, driveshaft RPM, battery voltage, and lateral g-force as well as acceleration g-force.

Samples of data can be recorded at up to 100 times per second. I have the advantage of seeing more numbers on the screen associated with the graphs than printed here. Take a look at Graph A below; this tells me the car was a foot brake car idling at the light about 1,600 rpm. Once the accelerator was depressed toward the floor, it took .242 second for the torque converter to reach a stall speed of about 3,750 rpm. Part of that was time needed to fully depress the accelerator.

In another .112 second, the driveshaft began to move the car. The first- to second-gear shift was made at 6,320 rpm, while the second- to third-gear shift was made at 6,000 rpm, and I crossed the finish line at 5,671 rpm.

Since this is also a quarter-mile race car, it shouldn’t cross the finish line at a higher engine RPM than the shift points. Even though the car was shifted at exactly 6,000 rpm on both shifts, the one-two shift is not as responsive as the two-three shift. Also at the one-two shift, it appears there was a little tire slippage shown in the driveshaft curve and even more in the two-three shift. How would I have known any of this without the data acquisition system telling me?

Looking at Graph B on page 124 you see there is no voltage drop at all. A consistent 13.2 volts were available throughout the entire run. My electrical system is working flawlessly.

When we look at the Graph C on page 124, it shows that the car has a little sideways motion, but it’s not bad. Perhaps it could be the front-end caster settings and not necessarily the rear tires. I’ll monitor it in the future, and see if it’s a consistent issue. If it becomes more pronounced, I’ll know something is wearing out and requires service. If it goes away, I’ll know it was a one-time occurrence.

Look at the Graph D on page 124. During the first .40 second of the run, an acceleration g-force of 1.40 was achieved and then steadily declined during the rest of the run. I can remember when I had my 1991 tube chassis-equipped Cutlass, the acceleration g-force was 2 to 2.4. The unit has to be mounted in a specific forward direction for the lateral and acceleration g-force meters to work properly.


Ignition System and RPM Limiters

Just as important as maintaining your battery to peak levels for operation of all electronics, you need an ignition system that is capable of delivering a high enough voltage spark at all points throughout the run. Some ignition systems have extra capabilities besides just firing the spark plugs.

I run the MSD Programmable Digital 6AL box. There are other MSD boxes that can also perform the following functions. Using a serial-port-to-USB-port adapter cable (provided) you can connect the box to your lap-top (if your computer does not have a USB port).

This MSD ignition box has three built-in RPM limiters. There is no more need for a multiple selection of RPM chips or rotary dials. One RPM limiter is to control the engine under wide-open throttle (WOT). Those who have ever lost a transmission or torque converter, missed a shift, or shifted into neutral all while under full throttle know the importance of an engine RPM limiter.

You simply select the RPM limit you want and enter the RPM at which you want the engine to be held. Since there is no need to run an engine past its peak-horsepower RPM, I would set the RPM limiter at 300 to 500 rpm above the peak horsepower point. If you have not dyno-tested your engine, I would set the RPM limiter at a similar 300 to 500 rpm above the highest engine speed obtained during your last run.

The second RPM limiter is only used when you are running a transmission brake. The RPM limiter holds the engine at your chosen speed while the trans brake button is engaged.

The third RPM limiter is my favorite, in that it limits the engine RPM during the burnout. It is tricky to maintain a steady RPM during a burnout while spinning the rear tires in water. With this RPM limiter being energized (along with the line lock) all you need to do is hold your accelerator to the floor and make some smoke. I would also put the trans in high gear before the burnout to lessen the engine RPM needed to get some good heat into the tires.

Once you have completed the burnout, pull up to the line and pre-stage. I put the transmission in neutral and lightly rev it to be sure it is not loaded up with fuel. Then put the transmission in first gear and stage.

With today’s ignitions, it probably isn’t necessary to rev the engine, but what it does is ensure that after the burnout is completed in third gear, the car doesn’t stage while still in third gear.

Another benefit of the MSD Programmable Digital 6AL box is you can program your entire distributor timing curve also from your laptop. Timing curves are very tricky to set and even sometimes once they are set they retard or take out timing at a high enough RPM when you don’t expect it.

The best way to set your timing is to throw away your distributor’s mechanical weights and springs that control timing advance and lock out the curve completely. This can be accomplished differently on different distributors.

Trying this while running too much compression makes for a hard-starting engine. With the MSD Programmable Digital 6AL (a centrifugal advance but on your laptop) and your distributor curve mechanism locked out, set the timing at 4 degrees above where you intend to run it. Now you can set up the timing to always pull out 4 degrees of timing with your laptop.

If you are ever in a situation (such as poor weather) and wish to add up to 4 degrees of timing, it’s simply a matter of plugging in your laptop and moving the timing line up however many degrees you wish.

You can also retard the timing further (14 degrees) for starting the engine. Although the engine has a heavier lope to the sound with the timing retarded and sounds cool, you have full advance back in at idle if you are a foot-brake racer and leave the line at idle. If you are a transmission-brake racer, bring the timing to full advance at the RPM your engine sees while on the trans brake.

Either way, there is no lag time when you leave the starting line to when the engine sees full advance. You can download this software at MSD’s Web site. This allows you to play with the software without making a purchase.

One of the things I have found interesting with my MSD Programmable Digital 6AL, which I have never seen advertised, is you can use it to “dial-in a car.” You can remove timing throughout the entire run and slow the car down. As a test I removed 20 degrees of timing and my car slowed down .50 second in the eighth-mile. It was as consistent at the slower time as it was at the normal time.

Sometimes when I go to a two-day event and race both days, I run it slow the first day. Then I speed it up for the second day (when you usually only get one time trial). That makes it hard for competitors who are really watching you to know what to expect from the car.

If you are running nitrous oxide, you can tie into the nitrous wiring so the box retards the timing instantly. Once you have all your settings where you want them, select “upload to the MSD box” on the screen, and that’s all there is to it.

These are a few of the more important items that I have found over the years worth looking into. During an event, there are many things to keep track of and many decisions to be made. Of course experience helps, but the more data you have from your car, the better the decisions you can make. Strive to be consistent not only in your ET, but also in your staging and reaction times. Once you have accomplished this, you will win races.

Sources & Citations:

Most of these Tech Tips are From the BookHOW TO HOOK & LAUNCH: TRACTION MODS FOR STREET & STRIP.

For the Heat Exchanger Kits: https://killerchiller.com
For more tips/tricks for performance: https://www.musclecardiy.com

Kincaid Performance Heat Exchangers, Intercoolers & SuperChargers for Toyota Tundra, Ford Lightning & Cobra, Dodge Challenger, Ford F150, Dodge Hellcat, Ford Mustang, Toyota Tacoma, Harley Davidson, Mercedes, Ford GT500, Chevy Camero, Audi, Cadillac, Chevy ZL1, Corvette

Kincaid Performance Inc.
201 Eubank Blvd NE, Ste C-1
Albuquerque, NM 87123

Source: http://kincaidperformanceauto.com/vehicle-tuning/supercharged-and-turbocharged-cars-how-to/